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Simplicial objects

Category: ∆

• Objects: for each n ≥ 0, the finite ordered set
[n] = {0 < 1 < · · · < n}
• Arrows: nondecreasing monotonic functions

Remark. Every arrow [n] → [m] can factor into a unique com-
position of surjective degeneracy maps followed by injective face
maps.
Face maps: dni : [n− 1]→ [n]; the image misses i
Degeneracy maps: sni : [n+ 1]→ [n]; i and i+ 1 in [n+ 1] both
map to i ∈ [n]

dni (x) =

{
x if x < i

x+ 1 if x ≥ i
sni (x) =

{
x if x ≤ i
x− 1 if x > i
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Simplicial objects
Example. The map [3]→ [5] defined by

0 7→ 1

1 7→ 1

2 7→ 3

3 7→ 5

is

[3]

[2] [3] [4] [5]

0

0 1 1 1

1

0 1 1 1

2

1 2 3 3

3

2 3 4 5

It suffices to only think about dni and sni , i ∈ {0, . . . , n}.
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Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Definition. Let C be a category. A simplicial object in C is a
contravariant functor ∆op → C.
That is, it is the data:

• the image of [n] in C. Write Xn.

• the image of [n]→ [m] in C. But by before,

• the image of dni : [n− 1]→ [n]. Write ∂ni : Xn → Xn−1.

• the image of sni : [n+ 1]→ [n]. Write σni : Xn → Xn+1.

Write X q for a simplicial object.



Simplicial objects

Simplicial objects themselves form a category. This is “just” the
category of functors from ∆op to C. In other words:

• Objects: functors ∆op → C, i.e., simplicial objects

• Arrows: natural transformations X q→ Y q, i.e., a family of
arrows fn : Xn → Yn that commute with maps Xn → Xm

and Yn → Ym. By before, it is enough to commute with
face and degeneracy maps.

Xn Yn

Xn−1 Yn−1

fn

∂ni ∂ni

fn−1

σn−1
i σn−1

i

Maps of simplicial objects are just degreewise maps that com-
mute with face and degeneracy maps.
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Simplicial objects

Simplicial objects satisfy the following simplicial identities, com-
ing from the category ∆:

• ∂n−1i ∂nj = ∂n−1j−1 ∂
n
i if i < j;

• σn+1
i σnj = σn+1

j+1 σ
n
i if i ≤ j;

• ∂n+1
i σnj =


σn−1j−1 ∂

n
i if i < j;

idXn if i = j or i = j + 1;

σn−1j ∂ni−1 if i > j + 1.
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Simplicial objects
Examples.

• the constant simplicial object. Xn = Xm for all n,m and
Xn → Xm is the identity. In particular, ∂ni and σni are
identity.
• the n-simplex.

Xn = ∆n = {(t0, . . . , tn) ⊆ Rn+1 | 0 ≤ ti ≤ 1 and
∑

ti = 1}

and ∂ni , σni are the geometric face and degeneracy maps.
∂n−1i includes the ith face, σn+1

i projects onto the ith face.
(This is a co-simplicial object.)
• the “classifying space” (not quite yet). Let G be a group.

Let Xn = Gn and

σi(g1, . . . , gn) = (g1, . . . , gi, 1, gi+1, . . . , gn)

∂i(g1, . . . , gn) =


(g2, . . . , gn) if i = 0;

(g1, . . . , gigi+1, . . . , gn) if 0 < i < n;

(g1, . . . , gn−1) if i = n.
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Simplicial objects

Geometric realization. Let X q be a simplicial set; i.e., a func-
tor ∆op → Set; i.e., Xn is a set and ∂ni , σni are set maps. We can
construct a topological space |X q|.

1 Xn ×∆n is |Xn|-many disjoint copies of the topological
n-simplex.

2 Take their disjoint union
∐
Xn ×∆n.

3 Glue (x, s) ∈ Xm ×∆m to (y, t) ∈ Xn ×∆n if there is a
map [m]→ [n] inducing Xn → Xm and ∆m → ∆n such
that y 7→ x and s 7→ t.

4 The resulting space
∐
Xn ×∆n/ ∼ is |X q|, the geometric

realization of X q.
n-simplexes of the form {σn−1i (y)} ×∆n for some y ∈ Xn−1 are
degenerate. We say σn−1i (y) ∈ Xn is degenerate and nondegener-
ate otherwise; nondegenerate elements index the n-cells of |X q|,
a CW complex.
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Simplicial objects

Remark. Geometric realization defines a functor which we write
|·| : sSet → Top. It is right adjoint to the singular simplex
functor S : Top→ sSet defined by

1 Take a topological space X.

2 Take the set of singular n-simplices: {f : ∆n → X}
3 The resultant simplicial set SX is, in degree n,
{f : ∆n → X} with face maps defined by
• ∂ni f(t0, . . . , tn−1) = f(t0, . . . , ti−1, 0, ti, . . . , tn−1)

and degeneracy maps defined by
• σn

i f(t0, . . . , tn+1) = f(t0, . . . , ti−1, ti + ti+1, ti+2, . . . , tn+1).

Adjointness: HomTop(|X|, Y ) ∼= HomsSet(X,SY ).
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Simplicial objects

Unnormalized chain complex. Let X q be a simplicial object
in an abelian category. Forget about the degeneracy maps. Build
a chain complex (X q, d) where

the degree n term is just Xn and

d =
n∑
i=0

(−1)i∂ni : Xn → Xn−1.

This is a chain complex; the simplicial identity condition that
∂n−1i ∂nj = ∂n−1j−1 ∂

n
i if i < j implies d2 = 0.
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for all n.

This is interesting because it shows no homological information
is lost.
This theorem is a small piece of a bigger picture.
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Simplicial objects

Homotopy. We consider a distinguished class of simplicial sets
called Kan complexes/fibrant simplicial sets. These are simplicial
sets with a “horn filling property:”

The kth horn Λnk ⊆ ∆n, is

• Geometrically: the boundary of ∆n with the kth face
removed.

•
• •

Λnk X q
∆n

Every kth horn can be filled, 0 ≤ k ≤ n.

• Combinatorially: for all n, 0 ≤ k ≤ n+ 1, if
x0, . . . , xk−1, xk+1, . . . , xn ∈ Xn with ∂ni xj = ∂nj−1xi if i < j,

then there exists y ∈ Xn+1 such that ∂n+1
i y = xi for i 6= k.

• Model categorically: to come.
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Simplicial objects

Examples. Kan complexes are easy to come across.

• If X q is a simplicial group (∆op → Grp), then as a
simplicial set X q is a Kan complex.

• Consequently, simplicial abelian groups, simplicial
R-modules, simplicial rings, simplicial k-algebras, simplicial
fields (which are boring) are all Kan complexes.

• Other examples do exist; the simplicial set BG is a Kan
complex for all G, but a simplicial group if and only if G is
abelian.
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Simplicial objects

Homotopy. Given a Kan complex, we can define homotopy
groups.

1 Let X q be a Kan complex. Let ∗ ∈ X0 be a base point.
Consider σn0 ◦ · · · ◦ σ00(∗) ∈ Xn but write ∗ for it too.

2 Let Zn = {x ∈ Xn | ∂ni x = ∗ for all i ∈ {0, . . . , n}}.
3 x is homotopic to x′, write x ∼ x′, if there exists a

homotopy y ∈ Xn+1 such that

∂n+1
i y =


∗ if i < n;

x if i = n;

x′ if i = n+ 1.

4 Define the nth homotopy group πnX q := Zn/ ∼.

Remark. The horn filling condition makes ∼ an equivalence
relation and ensures πnX q is well-defined.
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Simplicial objects

Remarks.

• πnX q ∼= πn|X q|.
• If X q is a simplicial object in an abelian category, then
hn(NX q) ∼= πnX q where the latter considers X q as a Kan
complex. So πnX q ∼= hn(NX q) ∼= hn(X q). (Small piece.)

• πn− realizes |BG| as a K(G, 1) space; i.e., π1BG = G and
πn6=1BG = {1}.
• Given a simplicial group X q, πnX q is independent of ∗. We

typically choose ∗ = 0 ∈ X0.
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Big piece. Dold-Kan correspondence.

If A is an abelian category, then there is an equivalence of cate-
gories

sA N−→ Ch≥0A

{simplicial {connective chain

objects in A} complexes in A}
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Simplicial objects

The equivalence is given by an inverse functor Ch≥0A
K−→ sA

where KC q is the simplicial object in which

• [n] maps to
⊕

[n]�[k]Ck and

• [m]→ [n] maps to
⊕

[n]�[k]Ck →
⊕

[m]�[r]Cr defined by

Ck
∂−→ Cs ↪→

⊕
[m]�[r]Cr where [m]→ [s]

d−→ [k] is the
unique factorization of [m]→ [n]→ [k].

KC q (face maps only):

C0 C0 ⊕ C1 C0 ⊕ (C1)
2 ⊕ C2 C0 ⊕ (C1)

3 ⊕ (C2)
3 ⊕ C3 · · ·

N and K are an adjoint pair:
HomsA(KC q, X q) ∼= HomCh≥0A(C q, NX q)
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∞-categories

The horn-filling property of a Kan complex is honestly rather
strong. Here is a situation in which it makes sense to consider a
weaker condition.

1 Let C be a category. We build its nerve, a simplicial set
NC q.

2 NCn := {functors F : [n]→ C}. That is,

NCn = {C0
f1−→ · · · fn−→ Cn}.

3 ∂ni : NCn → NCn−1 has image

C0
f1−→ · · · fi−1−−−→ Ci−1

fi+1◦fi−−−−→ Ci+1
fi+2−−−→ · · · fn−→ Cn.

4 σni : NCn → NCn+1 has image

C0
f1−→ · · · fi−→ Ci

idCi−−→ Ci
fi+1−−−→ · · · fn−→ Cn.
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∞-categories

Every category up to isomorphism can be recovered from its
nerve, and NC encodes the information of C as a simplicial set.
That is:

• The objects of C are the elements in NC0.
• The arrows of C are the elements in NC1; X

f−→ Y if and
only if f ∈ NC1 with ∂10f = X and ∂11f = Y .

• The compositions/factorizations of C are the elements in
NCn.
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∞-categories
Observe that the horn filling property need not always hold for
NC, but it does for most horns.

• The horn Λ2
1 ⊆ ∆2 must be filled. This is because

compositions exist.

C1

C0 C2

• Similarly, for any n, horns Λnk ⊆ ∆n must be filled when
0 < k < n. Call these inner horns.

• Outer horns Λn0 and Λnn need not be filled. Λ2
2 ⊆ ∆2 is

C1

C0 C2

This exists if C is a groupoid.
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∞-categories

Definition. A simplicial set X q with the inner horn filling prop-
erty is called an∞-category. (Also quasi-category, also weak Kan
complex, also (∞, 1)-category)

Theorem. Every ∞-category is realized as the nerve of some
small category C.
Remark. Of course, Kan complexes are ∞-categories, since all
horns are filled, not just inner horns. Kan complexes are ∞-
groupoids. (Also (∞, 0)-categories)
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∞-categories

Remark. (∞, n)-categories morally should be thought of as cat-
egories that carry information about maps between maps ad nau-
seam. For instance:

• In Top, objects are X, Y , topological spaces

• Morphisms are f, g : X → Y , continuous maps

• 2-morphisms are h : X × [0, 1]→ Y with h(x, 0) = f(x) and
h(x, 1) = g(x), homotopies

• 3-morphisms would be homotopies of homotopies, etc

An (∞, n)-category is a category with higher morphisms and the
k-morphisms are invertible for k > n.
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Model categories

One approach to understanding∞-categories, simplicial sets,∞-
groupoids, etc, is by using model categories. This is for a couple
of reasons:

• Model categories can naturally encode information about
higher categories; e.g., ∞-categories are simplicial sets
which are fibrant with respect to the Joyal model structure.

• Model categories can themselves be thought of as higher
categories; e.g., given a simplicial model category, one can
take the subcategory of “fibrant-cofibrant” objects, which
is a fibrant simplicial category. Its nerve is an ∞-category,
the underlying ∞-category. Every ∞-category admits a
fully faithful embedding into such a construction for the
appropriately chosen simplicial model category.

• The construction of model categories is topologically
motivated, and very similar to Waldhausen categories to
come.
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Model categories

Definition. A model categoryM is a category with three classes
of morphisms:

1 cofibrations X
(c)−→ Y

2 fibrations X
(f)−−→ Y

3 weak equivalences X
(w)−−→ Y

closed under composition and retracts and subject to the axioms
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Model categories

1 M has small limits and colimits,

2 (2 out of 3): given X
f−→ Y

g−→ Z, if any two of gf , f , and g
are weak equivalences, so is the third,

3 (factorization): any map X → Y can factor into both

X
(c)(w)−−−−→ Z

(f)−−→ Y and X
(c)−→ Z ′

(f)(w)−−−−→ Y ;

that is, a trivial cofibration followed by a fibration, or a
cofibration followed by a trivial fibration,

4 (lifts): if i or p is a weak equivalence, then ϕ exists and the
diagram commutes:

A C

B D

i(c) (f)p
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Model categories

Since M has limits and colimits, it has an initial object ∅ and a
terminal object ∗.

Definition. An object X is cofibrant if ∅ (c)−→ X.

Definition. An object X is fibrant if X
(f)−−→ ∗.

Definition. By the factorization axiom, given any X, we can
factor ∅ → X as

∅ (c)−→ Xc (f)(w)−−−−→ X;

Xc is a cofibrant replacement of X.
Definition. Dually, we can factor X → ∗ as

X
(c)(w)−−−−→ Xf (f)−−→ ∗;

Xf is a fibrant replacement of X.
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Remark. If you know any two of the three classes among weak
equivalences, cofibrations, and fibrations, then the third class is
uniquely determined from the axioms of a model category.

Remark. Given a model category M, its opposite Mop is also
a model category where
weak equivalences correspond to their opposites,
fibrations are opposites of cofibrations, and
cofibrations are opposites of fibrations.
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Model categories
Example. Let’s describe Kan complexes model categorically, as
promised.

1 Give sSet the following (Quillen) model categorical
structure (☡ there is more than one!):
• Cofibrations are levelwise injections
• Weak equivalences are weak homotopy equivalences of

geometric realizations
• Fibrations are Kan fibrations (right lifting property with

respect to horn inclusions). That is, f : X q→ Y q is a
fibration if

Λn
k X

∆n Y

f (f)

2 Fibrant objects are those where X q→ ∗ is a fibration. This
is the horn filling property.

3 Also notice that every object is cofibrant, since ∅ → X q is a
levelwise injection.
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Model categories
Example.

1 Give sSet the Joyal model categorical structure:
• Cofibrations are levelwise injections
• Weak equivalences are weak categorical equivalences;
X q→ Y q such that if C q is an ∞-category, then the induced
map [Y q, C q]→ [X q, C q] itself induces an isomorphism after
applying the functor that takes a simplicial set to the set of
objects of its underlying category.

• Fibrations are determined. In the case that X q→ Y q is a
fibration of ∞-categories, a fibration is an inner Kan
fibration (right lifting property with respect to inner horn
inclusions). That is, if X q and Y q are ∞-categories, then
X q→ Y q is a fibration if

Λn
k X

∆n Y

f (f) for 0 < k < n.

2 Fibrant objects are ∞-categories; X q→ ∗ is a fibration if
X q is an ∞-category.
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Model categories

Example.

1 Give sAlgk, sR-mod, sCR the following model structure:
• Fibrations are fibrations of underlying simplicial sets

(Quillen)
• Weak equivalences are weak equivalences of underlying

simplicial sets (Quillen)
• Cofibrations are determined.

2 This has the benefit of carrying homotopical information,
since every object will be fibrant, thus we can take
homotopy, and weak equivalences are homotopy
equivalences. These model categories give a setting for
homotopical algebra.
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Model categories

Question. How do we start with a model category and cook up
an ∞-category?

Answer. Localization.

• The weak equivalences are thought of as “weakly
invertible.” Localization is the process by which we make
this precise.

• The construction is more complicated than just “adding
inverses for weak equivalences.”

Remark. Up to weak equivalence in the Dwyer-Kan model cat-
egory structure of simplicial categories, every simplicial category
is the localization of a category with weak equivalences.
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Model categories

Remark. As stated before, model categories are a good frame-
work for doing homotopical algebra. We can understand this via
the homotopy category HoM associated to a model categoryM.

There are two different ways to build HoM which yield equiva-
lent categories.

1 Consider the objects in M which are both fibrant and
cofibrant. Write Mcf .
• There are many: Lemma. If X is an object, then (Xf )c

and (Xc)f are fibrant and cofibrant.
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2 We can define a homotopy between f, g : X → Y in Mcf

• Define a cylinder object C(X) for X ∈ obj(M): C(X) is a

factorization of the codiagonal ∇X : X tX idt id−−−−→ X as

∇X : X
∐

X → C(X)
(w)−−→ X

• Define a (left) homotopy between f, g if there exists a
diagram

X

C(X) Y

X

i
f

h

j g

such that there exists p : C(X)
(w)(f)−−−−→ X such that

pi = pj = id and i t j : X tX (c)−−→ C(X).
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3 f, g : X → Y being homotopic is an equivalence relation
when X is cofibrant and Y is fibrant. Define the category

HoM :=M
cf
�∼.

4 Alternative, abstract nonsense construction:
• Let W be the class of weak equivalences.
• HoM := W−1M; categorical localization.

W M W−1M

∼= D

5 (Hard) Theorem. [Quillen] W−1M∼=Mcf/ ∼.
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Spectra

Question. What does all this have to do with spectra?

• ∞-category: sAlgk with model structure aforementioned

• ∞-category: underlying ∞-category of the model category
DGAk with weak equivalences quasi-isomorphisms and
cofibrations retracts of iterated cell attachments

• ∞-category: EIk the ∞-category of E∞-ring spectra over
k: commutative, associative monoid objects in a symmetric
monoidal model category of spectra

We have functors sAlgk
DK−−→ DGAk → EIk. If k is a Q-algebra,

then DGAk ∼=∞-cat EIk, and DK is fully faithful with essential
image connective objects.
Simplicial rings are dense in connective spectra. For treatment
of this, see section 3.3 [Dundas, Goodwillie, McCarthy].
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