The Silmarillion 13 October 2020

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うへで

Category: Δ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Category: Δ

• Objects: for each $n \ge 0$, the finite ordered set $[n] = \{0 < 1 < \dots < n\}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Category: Δ

- Objects: for each $n \ge 0$, the finite ordered set $[n] = \{0 < 1 < \dots < n\}$
- Arrows: nondecreasing monotonic functions

Category: Δ

- Objects: for each $n \ge 0$, the finite ordered set $[n] = \{0 < 1 < \dots < n\}$
- Arrows: nondecreasing monotonic functions

Remark. Every arrow $[n] \rightarrow [m]$ can factor into a unique composition of surjective degeneracy maps followed by injective face maps.

Face maps: $d_i^n : [n-1] \to [n]$; the image misses iDegeneracy maps: $s_i^n : [n+1] \to [n]$; i and i+1 in [n+1] both map to $i \in [n]$

$$d_i^n(x) = \begin{cases} x & \text{if } x < i \\ x+1 & \text{if } x \ge i \end{cases} \qquad s_i^n(x) = \begin{cases} x & \text{if } x \le i \\ x-1 & \text{if } x > i \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Example. The map $[3] \rightarrow [5]$ defined by

 $\begin{array}{c} 0 \mapsto 1 \\ 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 5 \end{array}$

is

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example. The map $[3] \rightarrow [5]$ defined by

 $\begin{array}{c} 0 \mapsto 1 \\ 1 \mapsto 1 \\ 2 \mapsto 3 \\ 3 \mapsto 5 \end{array}$

[3]

0 1

 $\frac{2}{3}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Example. The map $[3] \rightarrow [5]$ defined by

 $0 \mapsto 1$ $1 \mapsto 1$ $2 \mapsto 3$ $3 \mapsto 5$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Example. The map $[3] \rightarrow [5]$ defined by

0	\mapsto	1
1	\mapsto	1
2	\mapsto	3
3	\mapsto	5

is

Example. The map $[3] \rightarrow [5]$ defined by

0	\mapsto	1
1	\mapsto	1
2	\mapsto	3
3	\mapsto	5

is

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Example. The map $[3] \rightarrow [5]$ defined by

0	\mapsto	1
1	\mapsto	1
2	\mapsto	3
3	\mapsto	5

Example. The map $[3] \rightarrow [5]$ defined by

0	\mapsto	1
1	\mapsto	1
2	\mapsto	3
3	\mapsto	5

is

It suffices to only think about d_i^n and s_i^n , $i \in \{0, \dots, n\}$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition. Let \mathcal{C} be a category. A simplicial object in \mathcal{C} is a contravariant functor $\Delta^{op} \to \mathcal{C}$. That is, it is the data:

• the image of [n] in \mathcal{C} . Write X_n .

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- the image of [n] in \mathcal{C} . Write X_n .
- the image of $[n] \to [m]$ in \mathcal{C} . But by before,

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- the image of [n] in \mathcal{C} . Write X_n .
- the image of $[n] \to [m]$ in \mathcal{C} . But by before,
- the image of $d_i^n : [n-1] \to [n]$. Write $\partial_i^n : X_n \to X_{n-1}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- the image of [n] in \mathcal{C} . Write X_n .
- the image of $[n] \to [m]$ in \mathcal{C} . But by before,
- the image of $d_i^n : [n-1] \to [n]$. Write $\partial_i^n : X_n \to X_{n-1}$.
- the image of $s_i^n : [n+1] \to [n]$. Write $\sigma_i^n : X_n \to X_{n+1}$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. Let \mathcal{C} be a category. A simplicial object in \mathcal{C} is a contravariant functor $\Delta^{op} \to \mathcal{C}$. That is, it is the data:

i nat is, it is the data:

- the image of [n] in \mathcal{C} . Write X_n .
- the image of $[n] \to [m]$ in \mathcal{C} . But by before,
- the image of $d_i^n : [n-1] \to [n]$. Write $\partial_i^n : X_n \to X_{n-1}$.
- the image of $s_i^n : [n+1] \to [n]$. Write $\sigma_i^n : X_n \to X_{n+1}$.

Write X_{\bullet} for a simplicial object.

Simplicial objects themselves form a category. This is "just" the category of functors from Δ^{op} to \mathcal{C} . In other words:

Simplicial objects themselves form a category. This is "just" the category of functors from Δ^{op} to \mathcal{C} . In other words:

• Objects: functors $\Delta^{op} \to \mathcal{C}$, i.e., simplicial objects

Simplicial objects themselves form a category. This is "just" the category of functors from Δ^{op} to \mathcal{C} . In other words:

- Objects: functors $\Delta^{op} \to \mathcal{C}$, i.e., simplicial objects
- Arrows: natural transformations $X_{\bullet} \to Y_{\bullet}$, i.e., a family of arrows $f_n : X_n \to Y_n$ that commute with maps $X_n \to X_m$ and $Y_n \to Y_m$. By before, it is enough to commute with face and degeneracy maps.

Simplicial objects themselves form a category. This is "just" the category of functors from Δ^{op} to \mathcal{C} . In other words:

- Objects: functors $\Delta^{op} \to \mathcal{C}$, i.e., simplicial objects
- Arrows: natural transformations $X_{\bullet} \to Y_{\bullet}$, i.e., a family of arrows $f_n : X_n \to Y_n$ that commute with maps $X_n \to X_m$ and $Y_n \to Y_m$. By before, it is enough to commute with face and degeneracy maps.

$$\begin{array}{c} X_n \xrightarrow{f_n} Y_n \\ \partial_i^n \Big| \Big\uparrow \sigma_i^{n-1} & \partial_i^n \Big| \Big\uparrow \sigma_i^{n-1} \\ X_{n-1} \xrightarrow{f_{n-1}} Y_{n-1} \end{array}$$

Simplicial objects themselves form a category. This is "just" the category of functors from Δ^{op} to \mathcal{C} . In other words:

- Objects: functors $\Delta^{op} \to \mathcal{C}$, i.e., simplicial objects
- Arrows: natural transformations $X_{\bullet} \to Y_{\bullet}$, i.e., a family of arrows $f_n : X_n \to Y_n$ that commute with maps $X_n \to X_m$ and $Y_n \to Y_m$. By before, it is enough to commute with face and degeneracy maps.

$$\begin{array}{c} X_n \xrightarrow{f_n} Y_n \\ \partial_i^n \Big| \Big\uparrow \sigma_i^{n-1} & \partial_i^n \Big| \Big\uparrow \sigma_i^{n-1} \\ X_{n-1} \xrightarrow{f_{n-1}} Y_{n-1} \end{array}$$

Maps of simplicial objects are just degreewise maps that commute with face and degeneracy maps.

Simplicial objects satisfy the following simplicial identities, coming from the category Δ :

Simplicial objects satisfy the following simplicial identities, coming from the category Δ :

•
$$\partial_i^{n-1} \partial_j^n = \partial_{j-1}^{n-1} \partial_i^n$$
 if $i < j;$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Simplicial objects satisfy the following simplicial identities, coming from the category Δ :

• $\partial_i^{n-1} \partial_j^n = \partial_{j-1}^{n-1} \partial_i^n$ if i < j;

•
$$\sigma_i^{n+1}\sigma_j^n = \sigma_{j+1}^{n+1}\sigma_i^n$$
 if $i \le j$;

Simplicial objects satisfy the following simplicial identities, coming from the category Δ :

•
$$\partial_i^{n-1}\partial_j^n = \partial_{j-1}^{n-1}\partial_i^n$$
 if $i < j$;
• $\sigma_i^{n+1}\sigma_j^n = \sigma_{j+1}^{n+1}\sigma_i^n$ if $i \le j$;
• $\partial_i^{n+1}\sigma_j^n = \begin{cases} \sigma_{j-1}^{n-1}\partial_i^n & \text{if } i < j; \\ \operatorname{id}_{X_n} & \text{if } i = j \text{ or } i = j+1; \\ \sigma_j^{n-1}\partial_{i-1}^n & \text{if } i > j+1. \end{cases}$

Examples.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples.

• the constant simplicial object. $X_n = X_m$ for all n, m and $X_n \to X_m$ is the identity. In particular, ∂_i^n and σ_i^n are identity.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Examples.

- the constant simplicial object. $X_n = X_m$ for all n, m and $X_n \to X_m$ is the identity. In particular, ∂_i^n and σ_i^n are identity.
- the *n*-simplex.

$$X_n = \Delta^n = \{(t_0, \dots, t_n) \subseteq \mathbf{R}^{n+1} \mid 0 \le t_i \le 1 \text{ and } \sum t_i = 1\}$$

and ∂_i^n , σ_i^n are the geometric face and degeneracy maps. ∂_i^{n-1} includes the *i*th face, σ_i^{n+1} projects onto the *i*th face. (This is a co-simplicial object.)

Examples.

- the constant simplicial object. $X_n = X_m$ for all n, m and $X_n \to X_m$ is the identity. In particular, ∂_i^n and σ_i^n are identity.
- the *n*-simplex.

$$X_n = \Delta^n = \{(t_0, \dots, t_n) \subseteq \mathbf{R}^{n+1} \mid 0 \le t_i \le 1 \text{ and } \sum t_i = 1\}$$

and ∂_i^n , σ_i^n are the geometric face and degeneracy maps. ∂_i^{n-1} includes the *i*th face, σ_i^{n+1} projects onto the *i*th face. (This is a co-simplicial object.)

• the "classifying space" (not quite yet). Let G be a group. Let $X_n = G^n$ and

$$\sigma_i(g_1, \dots, g_n) = (g_1, \dots, g_i, 1, g_{i+1}, \dots, g_n)$$

$$\partial_i(g_1, \dots, g_n) = \begin{cases} (g_2, \dots, g_n) & \text{if } i = 0; \\ (g_1, \dots, g_i g_{i+1}, \dots, g_n) & \text{if } 0 < i < n; \\ (g_1, \dots, g_{n-1}) & \text{if } i \in \mathbb{R}, n_i \in \mathbb{R},$$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometric realization. Let X_{\bullet} be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometric realization. Let X. be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

1 $X_n \times \Delta^n$ is $|X_n|$ -many disjoint copies of the topological *n*-simplex.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometric realization. Let X. be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

- 1 $X_n \times \Delta^n$ is $|X_n|$ -many disjoint copies of the topological *n*-simplex.
- 2 Take their disjoint union $\coprod X_n \times \Delta^n$.

うして ふゆ とう かんし とう うくしゃ

Geometric realization. Let X_{\bullet} be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

- 1 $X_n \times \Delta^n$ is $|X_n|$ -many disjoint copies of the topological *n*-simplex.
- 2 Take their disjoint union $\coprod X_n \times \Delta^n$.
- 3 Glue $(x, s) \in X_m \times \Delta^m$ to $(y, t) \in X_n \times \Delta^n$ if there is a map $[m] \to [n]$ inducing $X_n \to X_m$ and $\Delta^m \to \Delta^n$ such that $y \mapsto x$ and $s \mapsto t$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Geometric realization. Let X_{\bullet} be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

- 1 $X_n \times \Delta^n$ is $|X_n|$ -many disjoint copies of the topological *n*-simplex.
- 2 Take their disjoint union $\coprod X_n \times \Delta^n$.
- 3 Glue $(x, s) \in X_m \times \Delta^m$ to $(y, t) \in X_n \times \Delta^n$ if there is a map $[m] \to [n]$ inducing $X_n \to X_m$ and $\Delta^m \to \Delta^n$ such that $y \mapsto x$ and $s \mapsto t$.
- 4 The resulting space $\coprod X_n \times \Delta^n / \sim$ is $|X_{\bullet}|$, the geometric realization of X_{\bullet} .
Geometric realization. Let X_{\bullet} be a simplicial set; i.e., a functor $\Delta^{op} \to \mathbf{Set}$; i.e., X_n is a set and ∂_i^n , σ_i^n are set maps. We can construct a topological space $|X_{\bullet}|$.

- 1 $X_n \times \Delta^n$ is $|X_n|$ -many disjoint copies of the topological *n*-simplex.
- 2 Take their disjoint union $\coprod X_n \times \Delta^n$.
- 3 Glue $(x, s) \in X_m \times \Delta^m$ to $(y, t) \in X_n \times \Delta^n$ if there is a map $[m] \to [n]$ inducing $X_n \to X_m$ and $\Delta^m \to \Delta^n$ such that $y \mapsto x$ and $s \mapsto t$.
- 4 The resulting space $\coprod X_n \times \Delta^n / \sim$ is $|X_{\bullet}|$, the geometric realization of X_{\bullet} .

n-simplexes of the form $\{\sigma_i^{n-1}(y)\} \times \Delta^n$ for some $y \in X_{n-1}$ are degenerate. We say $\sigma_i^{n-1}(y) \in X_n$ is degenerate and nondegenerate otherwise; nondegenerate elements index the *n*-cells of $|X_{\bullet}|$, a CW complex.

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

1) Take a topological space X.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

1) Take a topological space X.

2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

- 1) Take a topological space X.
- 2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$
- 3 The resultant simplicial set SX is, in degree n, $\{f: \Delta^n \to X\}$ with face maps defined by

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

- 1) Take a topological space X.
- 2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$
- 3 The resultant simplicial set SX is, in degree n, $\{f : \Delta^n \to X\}$ with face maps defined by
 - $\partial_i^n f(t_0, \dots, t_{n-1}) = f(t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

1) Take a topological space X.

- 2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$
- 3 The resultant simplicial set SX is, in degree n, $\{f: \Delta^n \to X\}$ with face maps defined by

• $\partial_i^n f(t_0, \dots, t_{n-1}) = f(t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$ and degeneracy maps defined by

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

1) Take a topological space X.

- 2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$
- 3 The resultant simplicial set SX is, in degree n, $\{f: \Delta^n \to X\}$ with face maps defined by
 - $\partial_i^n f(t_0, \dots, t_{n-1}) = f(t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$ and degeneracy maps defined by
 - $\sigma_i^n f(t_0, \dots, t_{n+1}) = f(t_0, \dots, t_{i-1}, t_i + t_{i+1}, t_{i+2}, \dots, t_{n+1}).$

Remark. Geometric realization defines a functor which we write $|\cdot| : s\mathbf{Set} \to \mathbf{Top}$. It is right adjoint to the singular simplex functor $S : \mathbf{Top} \to s\mathbf{Set}$ defined by

1) Take a topological space X.

- 2 Take the set of singular *n*-simplices: $\{f : \Delta^n \to X\}$
- 3 The resultant simplicial set SX is, in degree n, $\{f: \Delta^n \to X\}$ with face maps defined by
 - $\partial_i^n f(t_0, \dots, t_{n-1}) = f(t_0, \dots, t_{i-1}, 0, t_i, \dots, t_{n-1})$ and degeneracy maps defined by
 - $\sigma_i^n f(t_0, \dots, t_{n+1}) = f(t_0, \dots, t_{i-1}, t_i + t_{i+1}, t_{i+2}, \dots, t_{n+1}).$

Adjointness: $\operatorname{Hom}_{\operatorname{Top}}(|X|, Y) \cong \operatorname{Hom}_{s\operatorname{Set}}(X, SY).$

Unnormalized chain complex. Let X_{\bullet} be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (X_{\bullet}, d) where

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Unnormalized chain complex. Let X_{\bullet} be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (X_{\bullet}, d) where the degree n term is just X_n and

$$d = \sum_{i=0}^{n} (-1)^{i} \partial_{i}^{n} : X_{n} \to X_{n-1}.$$

Unnormalized chain complex. Let X_{\bullet} be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (X_{\bullet}, d) where the degree n term is just X_n and

$$d = \sum_{i=0}^{n} (-1)^i \partial_i^n : X_n \to X_{n-1}.$$

This is a chain complex; the simplicial identity condition that $\partial_i^{n-1}\partial_j^n = \partial_{j-1}^{n-1}\partial_i^n$ if i < j implies $d^2 = 0$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Normalized chain complex. Let X. be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (NX, d) where $d = (-1)^n \partial_n^n$ and

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Normalized chain complex. Let X. be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (NX, d) where $d = (-1)^n \partial_n^n$ and

$$NX_n = \bigcap_{i=0}^{n-1} \ker(\partial_i^n : X_n \to X_{n-1})$$

Normalized chain complex. Let X. be a simplicial object in an abelian category. Forget about the degeneracy maps. Build a chain complex (NX, d) where $d = (-1)^n \partial_n^n$ and

$$NX_n = \bigcap_{i=0}^{n-1} \ker(\partial_i^n : X_n \to X_{n-1})$$

This is a chain complex; it is a subcomplex of the unnormalized complex.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

Theorem. The homologies of the unnormalized and normalized chain complexes are isomorphic.

 $h_n(X_{\bullet}) \cong h_n(NX_{\bullet})$

for all n.

Theorem. The homologies of the unnormalized and normalized chain complexes are isomorphic.

 $h_n(X_{\bullet}) \cong h_n(NX_{\bullet})$

for all n.

This is interesting because it shows no homological information is lost.

Theorem. The homologies of the unnormalized and normalized chain complexes are isomorphic.

 $h_n(X_{\bullet}) \cong h_n(NX_{\bullet})$

for all n.

This is interesting because it shows no homological information is lost.

This theorem is a small piece of a bigger picture.

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:"

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

$$\begin{array}{ccc} \bullet & \Lambda^n_k \longrightarrow X. \\ \bullet \xrightarrow{\nearrow} & \downarrow & \downarrow \\ \bullet \xrightarrow{\longrightarrow} & \bullet & \Delta^n \end{array}$$

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

$$\begin{array}{ccc} \bullet & \Lambda_k^n \longrightarrow X. \\ \bullet \xrightarrow{\nearrow} \bullet & \downarrow & \swarrow^{\xrightarrow{\gamma}} \\ \Delta^n & \end{array}$$

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

• Geometrically: the boundary of Δ^n with the *k*th face removed.

$$\bullet \xrightarrow{\nearrow} \bullet \xrightarrow{\Lambda_k^n} \to X.$$

Every kth horn can be filled, $0 \le k \le n$.

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

• Geometrically: the boundary of Δ^n with the *k*th face removed.

$$\begin{array}{ccc} \bullet & & \Lambda_k^n \longrightarrow X \\ \bullet \xrightarrow{\nearrow} & \bullet & & \downarrow \\ \bullet \xrightarrow{\longrightarrow} & \bullet & & \downarrow \\ \Delta^n \end{array}$$

Every kth horn can be filled, $0 \le k \le n$.

• Combinatorially: for all $n, 0 \le k \le n+1$, if $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n \in X_n$ with $\partial_i^n x_j = \partial_{j-1}^n x_i$ if i < j, then there exists $y \in X_{n+1}$ such that $\partial_i^{n+1} y = x_i$ for $i \neq k$.

Homotopy. We consider a distinguished class of simplicial sets called Kan complexes/fibrant simplicial sets. These are simplicial sets with a "horn filling property:" The *k*th horn $\Lambda_k^n \subseteq \Delta^n$, is

• Geometrically: the boundary of Δ^n with the *k*th face removed.

$$\begin{array}{ccc} \bullet & & \Lambda_k^n \longrightarrow X \\ \bullet \xrightarrow{\nearrow} & \bullet & & \downarrow \\ \bullet \xrightarrow{\longrightarrow} & \bullet & & \Delta^n \end{array}$$

Every kth horn can be filled, $0 \le k \le n$.

- Combinatorially: for all $n, 0 \le k \le n+1$, if $x_0, \ldots, x_{k-1}, x_{k+1}, \ldots, x_n \in X_n$ with $\partial_i^n x_j = \partial_{j-1}^n x_i$ if i < j, then there exists $y \in X_{n+1}$ such that $\partial_i^{n+1} y = x_i$ for $i \neq k$.
- Model categorically: to come.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Examples. Kan complexes are easy to come across.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples. Kan complexes are easy to come across.

• If X_{\bullet} is a simplicial group $(\Delta^{op} \to \mathbf{Grp})$, then as a simplicial set X_{\bullet} is a Kan complex.

Examples. Kan complexes are easy to come across.

- If X_{\bullet} is a simplicial group $(\Delta^{op} \to \mathbf{Grp})$, then as a simplicial set X_{\bullet} is a Kan complex.
- Consequently, simplicial abelian groups, simplicial *R*-modules, simplicial rings, simplicial *k*-algebras, simplicial fields (which are boring) are all Kan complexes.

Examples. Kan complexes are easy to come across.

- If X_{\bullet} is a simplicial group $(\Delta^{op} \to \mathbf{Grp})$, then as a simplicial set X_{\bullet} is a Kan complex.
- Consequently, simplicial abelian groups, simplicial *R*-modules, simplicial rings, simplicial *k*-algebras, simplicial fields (which are boring) are all Kan complexes.
- Other examples do exist; the simplicial set BG is a Kan complex for all G, but a simplicial group if and only if G is abelian.

Homotopy. Given a Kan complex, we can define homotopy groups.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Homotopy. Given a Kan complex, we can define homotopy groups.

1 Let X, be a Kan complex. Let $* \in X_0$ be a base point. Consider $\sigma_0^n \circ \cdots \circ \sigma_0^0(*) \in X_n$ but write * for it too.

Homotopy. Given a Kan complex, we can define homotopy groups.

- Let X be a Kan complex. Let $* \in X_0$ be a base point. Consider $\sigma_0^n \circ \cdots \circ \sigma_0^0(*) \in X_n$ but write * for it too.
- 2 Let $Z_n = \{x \in X_n \mid \partial_i^n x = * \text{ for all } i \in \{0, ..., n\}\}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Homotopy. Given a Kan complex, we can define homotopy groups.

1 Let X be a Kan complex. Let $* \in X_0$ be a base point. Consider $\sigma_0^n \circ \cdots \circ \sigma_0^0(*) \in X_n$ but write * for it too.

2 Let
$$Z_n = \{x \in X_n \mid \partial_i^n x = * \text{ for all } i \in \{0, \dots, n\}\}.$$

3 x is homotopic to x', write $x \sim x'$, if there exists a homotopy $y \in X_{n+1}$ such that

$$\partial_i^{n+1} y = \begin{cases} * & \text{if } i < n; \\ x & \text{if } i = n; \\ x' & \text{if } i = n+1. \end{cases}$$
Homotopy. Given a Kan complex, we can define homotopy groups.

■ Let X be a Kan complex. Let $* \in X_0$ be a base point. Consider $\sigma_0^n \circ \cdots \circ \sigma_0^0(*) \in X_n$ but write * for it too.

2 Let
$$Z_n = \{x \in X_n \mid \partial_i^n x = * \text{ for all } i \in \{0, \dots, n\}\}.$$

3 x is homotopic to x', write $x \sim x'$, if there exists a homotopy $y \in X_{n+1}$ such that

$$\partial_i^{n+1} y = \begin{cases} * & \text{if } i < n; \\ x & \text{if } i = n; \\ x' & \text{if } i = n+1. \end{cases}$$

4 Define the *n*th homotopy group $\pi_n X_{\bullet} \coloneqq Z_n / \sim$.

Homotopy. Given a Kan complex, we can define homotopy groups.

■ Let X be a Kan complex. Let $* \in X_0$ be a base point. Consider $\sigma_0^n \circ \cdots \circ \sigma_0^0(*) \in X_n$ but write * for it too.

2 Let
$$Z_n = \{x \in X_n \mid \partial_i^n x = * \text{ for all } i \in \{0, \dots, n\}\}.$$

3 x is homotopic to x', write $x \sim x'$, if there exists a homotopy $y \in X_{n+1}$ such that

$$\partial_i^{n+1} y = \begin{cases} * & \text{if } i < n; \\ x & \text{if } i = n; \\ x' & \text{if } i = n+1 \end{cases}$$

4 Define the *n*th homotopy group $\pi_n X_{\bullet} \coloneqq Z_n / \sim$.

Remark. The horn filling condition makes \sim an equivalence relation and ensures $\pi_n X_{\bullet}$ is well-defined.

Remarks.

• $\pi_n X_{\bullet} \cong \pi_n |X_{\bullet}|.$

- $\pi_n X_{\bullet} \cong \pi_n |X_{\bullet}|.$
- If X_{\bullet} is a simplicial object in an abelian category, then $h_n(NX_{\bullet}) \cong \pi_n X_{\bullet}$ where the latter considers X_{\bullet} as a Kan complex. So $\pi_n X_{\bullet} \cong h_n(NX_{\bullet}) \cong h_n(X_{\bullet})$. (Small piece.)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\pi_n X_{\bullet} \cong \pi_n |X_{\bullet}|.$
- If X_{\bullet} is a simplicial object in an abelian category, then $h_n(NX_{\bullet}) \cong \pi_n X_{\bullet}$ where the latter considers X_{\bullet} as a Kan complex. So $\pi_n X_{\bullet} \cong h_n(NX_{\bullet}) \cong h_n(X_{\bullet})$. (Small piece.)
- π_n realizes |BG| as a K(G, 1) space; i.e., $\pi_1 BG = G$ and $\pi_{n \neq 1} BG = \{1\}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\pi_n X_{\bullet} \cong \pi_n |X_{\bullet}|.$
- If X_{\bullet} is a simplicial object in an abelian category, then $h_n(NX_{\bullet}) \cong \pi_n X_{\bullet}$ where the latter considers X_{\bullet} as a Kan complex. So $\pi_n X_{\bullet} \cong h_n(NX_{\bullet}) \cong h_n(X_{\bullet})$. (Small piece.)
- π_n realizes |BG| as a K(G, 1) space; i.e., $\pi_1 BG = G$ and $\pi_{n \neq 1} BG = \{1\}.$
- Given a simplicial group X_{\bullet} , $\pi_n X_{\bullet}$ is independent of *. We typically choose $* = 0 \in X_0$.

Big piece. Dold-Kan correspondence.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Big piece. Dold-Kan correspondence. If \mathcal{A} is an abelian category, then there is an equivalence of categories

 $s\mathcal{A} \xrightarrow{N} \mathbf{Ch}_{\geq 0}\mathcal{A}$ {simplicial {connective chain objects in \mathcal{A} } complexes in \mathcal{A} }

The equivalence is given by an inverse functor $\mathbf{Ch}_{\geq 0}\mathcal{A} \xrightarrow{K} s\mathcal{A}$ where KC_{\bullet} is the simplicial object in which

The equivalence is given by an inverse functor $\mathbf{Ch}_{\geq 0}\mathcal{A} \xrightarrow{K} s\mathcal{A}$ where KC_{\bullet} is the simplicial object in which

• [n] maps to $\bigoplus_{[n] \to [k]} C_k$ and

うして ふゆ とう かんし とう うくしゃ

The equivalence is given by an inverse functor $\mathbf{Ch}_{\geq 0}\mathcal{A} \xrightarrow{K} s\mathcal{A}$ where KC_{\bullet} is the simplicial object in which

- [n] maps to $\bigoplus_{[n] \to [k]} C_k$ and
- $[m] \to [n]$ maps to $\bigoplus_{[n] \to [k]} C_k \to \bigoplus_{[m] \to [r]} C_r$ defined by $C_k \xrightarrow{\partial} C_s \hookrightarrow \bigoplus_{[m] \to [r]} C_r$ where $[m] \to [s] \xrightarrow{d} [k]$ is the unique factorization of $[m] \to [n] \to [k]$.

うして ふゆ とう かんし とう うくしゃ

The equivalence is given by an inverse functor $\mathbf{Ch}_{\geq 0}\mathcal{A} \xrightarrow{K} s\mathcal{A}$ where KC_{\bullet} is the simplicial object in which

- [n] maps to $\bigoplus_{[n] \to [k]} C_k$ and
- $[m] \to [n]$ maps to $\bigoplus_{[n] \to [k]} C_k \to \bigoplus_{[m] \to [r]} C_r$ defined by $C_k \xrightarrow{\partial} C_s \hookrightarrow \bigoplus_{[m] \to [r]} C_r$ where $[m] \to [s] \xrightarrow{d} [k]$ is the unique factorization of $[m] \to [n] \to [k]$.

 $KC_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ (face maps only):

$$C_0 \not\subset C_0 \oplus C_1 \stackrel{\leftarrow}{\underset{\leftarrow}{\leftarrow}} C_0 \oplus (C_1)^2 \oplus C_2 \stackrel{\leftarrow}{\underset{\leftarrow}{\leftarrow}} C_0 \oplus (C_1)^3 \oplus (C_2)^3 \oplus C_3 \cdots$$

The equivalence is given by an inverse functor $\mathbf{Ch}_{\geq 0}\mathcal{A} \xrightarrow{K} s\mathcal{A}$ where KC_{\bullet} is the simplicial object in which

- [n] maps to $\bigoplus_{[n] \to [k]} C_k$ and
- $[m] \to [n]$ maps to $\bigoplus_{[n] \to [k]} C_k \to \bigoplus_{[m] \to [r]} C_r$ defined by $C_k \xrightarrow{\partial} C_s \hookrightarrow \bigoplus_{[m] \to [r]} C_r$ where $[m] \to [s] \xrightarrow{d} [k]$ is the unique factorization of $[m] \to [n] \to [k]$.

 $KC_{\:\raisebox{1pt}{\text{\circle*{1.5}}}}$ (face maps only):

$$C_0 \not\equiv C_0 \oplus C_1 \stackrel{\leftarrow}{\underset{\leftarrow}{\leftarrow}} C_0 \oplus (C_1)^2 \oplus C_2 \stackrel{\leftarrow}{\underset{\leftarrow}{\leftarrow}} C_0 \oplus (C_1)^3 \oplus (C_2)^3 \oplus C_3 \cdots$$

N and K are an adjoint pair: Hom_{sA}($KC_{\bullet}, X_{\bullet}$) \cong Hom_{Ch ≥ 0}A($C_{\bullet}, NX_{\bullet}$)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The horn-filling property of a Kan complex is honestly rather strong. Here is a situation in which it makes sense to consider a weaker condition.

 ${\rm l}$ Let ${\mathcal C}$ be a category. We build its nerve, a simplicial set $N{\mathcal C}_{{\scriptscriptstyle \bullet}}.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ${\rm 1\!\!I}$ Let ${\mathcal C}$ be a category. We build its nerve, a simplicial set $N{\mathcal C}_{{\rm -}}.$
- 2 $N\mathcal{C}_n \coloneqq \{ \text{functors } F : [n] \to \mathcal{C} \}.$ That is, $N\mathcal{C}_n = \{ C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_n} C_n \}.$

- ${\rm l}$ Let ${\mathcal C}$ be a category. We build its nerve, a simplicial set $N{\mathcal C}_{{\scriptscriptstyle \bullet}}.$
- 2 $N\mathcal{C}_n \coloneqq \{ \text{functors } F : [n] \to \mathcal{C} \}.$ That is, $N\mathcal{C}_n = \{ C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_n} C_n \}.$
- 3 $\partial_i^n : N\mathcal{C}_n \to N\mathcal{C}_{n-1}$ has image $C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_{i-1}} C_{i-1} \xrightarrow{f_{i+1} \circ f_i} C_{i+1} \xrightarrow{f_{i+2}} \cdots \xrightarrow{f_n} C_n.$

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- ${\rm l}$ Let ${\cal C}$ be a category. We build its nerve, a simplicial set $N{\cal C}_{{\scriptstyle \bullet}}.$
- 2 $N\mathcal{C}_n \coloneqq \{ \text{functors } F : [n] \to \mathcal{C} \}.$ That is, $N\mathcal{C}_n = \{ C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_n} C_n \}.$

3
$$\partial_i^n : N\mathcal{C}_n \to N\mathcal{C}_{n-1}$$
 has image
 $C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_{i-1}} C_{i-1} \xrightarrow{f_{i+1} \circ f_i} C_{i+1} \xrightarrow{f_{i+2}} \cdots \xrightarrow{f_n} C_n.$

4
$$\sigma_i^n : N\mathcal{C}_n \to N\mathcal{C}_{n+1}$$
 has image
 $C_0 \xrightarrow{f_1} \cdots \xrightarrow{f_i} C_i \xrightarrow{\operatorname{id}_{C_i}} C_i \xrightarrow{f_{i+1}} \cdots \xrightarrow{f_n} C_n.$

Every category up to isomorphism can be recovered from its nerve, and NC encodes the information of C as a simplicial set. That is:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Every category up to isomorphism can be recovered from its nerve, and NC encodes the information of C as a simplicial set. That is:

• The objects of \mathcal{C} are the elements in $N\mathcal{C}_0$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Every category up to isomorphism can be recovered from its nerve, and NC encodes the information of C as a simplicial set. That is:

- The objects of \mathcal{C} are the elements in $N\mathcal{C}_0$.
- The arrows of \mathcal{C} are the elements in $N\mathcal{C}_1$; $X \xrightarrow{f} Y$ if and only if $f \in N\mathcal{C}_1$ with $\partial_0^1 f = X$ and $\partial_1^1 f = Y$.

Every category up to isomorphism can be recovered from its nerve, and NC encodes the information of C as a simplicial set. That is:

- The objects of \mathcal{C} are the elements in $N\mathcal{C}_0$.
- The arrows of \mathcal{C} are the elements in $N\mathcal{C}_1$; $X \xrightarrow{f} Y$ if and only if $f \in N\mathcal{C}_1$ with $\partial_0^1 f = X$ and $\partial_1^1 f = Y$.
- The compositions/factorizations of C are the elements in NC_n .

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆□ ▶ ◆□ ▶

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

• The horn $\Lambda_1^2 \subseteq \Delta^2$ must be filled. This is because compositions exist.

• Similarly, for any n, horns $\Lambda_k^n \subseteq \Delta^n$ must be filled when 0 < k < n. Call these inner horns.

うして ふゆ とう かんし とう うくしゃ

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

- Similarly, for any n, horns $\Lambda_k^n \subseteq \Delta^n$ must be filled when 0 < k < n. Call these inner horns.
- Outer horns Λ_0^n and Λ_n^n need not be filled. $\Lambda_2^2 \subseteq \Delta^2$ is

うして ふゆ とう かんし とう うくしゃ

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

- Similarly, for any n, horns $\Lambda_k^n \subseteq \Delta^n$ must be filled when 0 < k < n. Call these inner horns.
- Outer horns Λ_0^n and Λ_n^n need not be filled. $\Lambda_2^2 \subseteq \Delta^2$ is

うして ふゆ とう かんし とう うくしゃ

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

- Similarly, for any n, horns $\Lambda_k^n \subseteq \Delta^n$ must be filled when 0 < k < n. Call these inner horns.
- Outer horns Λ_0^n and Λ_n^n need not be filled. $\Lambda_2^2 \subseteq \Delta^2$ is

Observe that the horn filling property need not always hold for $N\mathcal{C}$, but it does for most horns.

• The horn $\Lambda_1^2 \subseteq \Delta^2$ must be filled. This is because compositions exist.

- Similarly, for any n, horns $\Lambda_k^n \subseteq \Delta^n$ must be filled when 0 < k < n. Call these inner horns.
- Outer horns Λ_0^n and Λ_n^n need not be filled. $\Lambda_2^2 \subseteq \Delta^2$ is

This exists if \mathcal{C} is a groupoid.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition. A simplicial set X. with the inner horn filling property is called an ∞ -category. (Also quasi-category, also weak Kan complex, also (∞ , 1)-category)

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Definition. A simplicial set X. with the inner horn filling property is called an ∞ -category. (Also quasi-category, also weak Kan complex, also $(\infty, 1)$ -category) **Theorem.** Every ∞ -category is realized as the nerve of some

small category \mathcal{C} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Definition. A simplicial set X, with the inner horn filling property is called an ∞ -category. (Also quasi-category, also weak Kan complex, also $(\infty, 1)$ -category)

Theorem. Every ∞ -category is realized as the nerve of some small category \mathcal{C} .

Remark. Of course, Kan complexes are ∞ -categories, since all horns are filled, not just inner horns. Kan complexes are ∞ -groupoids. (Also $(\infty, 0)$ -categories)

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:

• In **Top**, objects are X, Y, topological spaces

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:

- In **Top**, objects are X, Y, topological spaces
- Morphisms are $f, g: X \to Y$, continuous maps

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:

- In **Top**, objects are X, Y, topological spaces
- Morphisms are $f, g: X \to Y$, continuous maps
- 2-morphisms are $h: X \times [0,1] \to Y$ with h(x,0) = f(x) and h(x,1) = g(x), homotopies

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:

- In **Top**, objects are X, Y, topological spaces
- Morphisms are $f, g: X \to Y$, continuous maps
- 2-morphisms are $h: X \times [0,1] \to Y$ with h(x,0) = f(x) and h(x,1) = g(x), homotopies
- 3-morphisms would be homotopies of homotopies, etc

Remark. (∞, n) -categories morally should be thought of as categories that carry information about maps between maps ad nauseam. For instance:

- In **Top**, objects are X, Y, topological spaces
- Morphisms are $f, g: X \to Y$, continuous maps
- 2-morphisms are $h: X \times [0,1] \to Y$ with h(x,0) = f(x) and h(x,1) = g(x), homotopies
- 3-morphisms would be homotopies of homotopies, etc

An (∞, n) -category is a category with higher morphisms and the k-morphisms are invertible for k > n.

One approach to understanding ∞ -categories, simplicial sets, ∞ -groupoids, etc, is by using model categories. This is for a couple of reasons:

One approach to understanding ∞ -categories, simplicial sets, ∞ -groupoids, etc, is by using model categories. This is for a couple of reasons:

• Model categories can naturally encode information about higher categories; e.g., ∞-categories are simplicial sets which are fibrant with respect to the Joyal model structure.

One approach to understanding ∞ -categories, simplicial sets, ∞ -groupoids, etc, is by using model categories. This is for a couple of reasons:

- Model categories can naturally encode information about higher categories; e.g., ∞-categories are simplicial sets which are fibrant with respect to the Joyal model structure.
- Model categories can themselves be thought of as higher categories; e.g., given a simplicial model category, one can take the subcategory of "fibrant-cofibrant" objects, which is a fibrant simplicial category. Its nerve is an ∞-category, the underlying ∞-category. Every ∞-category admits a fully faithful embedding into such a construction for the appropriately chosen simplicial model category.

One approach to understanding ∞ -categories, simplicial sets, ∞ -groupoids, etc, is by using model categories. This is for a couple of reasons:

- Model categories can naturally encode information about higher categories; e.g., ∞-categories are simplicial sets which are fibrant with respect to the Joyal model structure.
- Model categories can themselves be thought of as higher categories; e.g., given a simplicial model category, one can take the subcategory of "fibrant-cofibrant" objects, which is a fibrant simplicial category. Its nerve is an ∞-category, the underlying ∞-category. Every ∞-category admits a fully faithful embedding into such a construction for the appropriately chosen simplicial model category.
- The construction of model categories is topologically motivated, and very similar to Waldhausen categories to come.

Definition. A model category \mathcal{M} is a category with three classes of morphisms:

Definition. A model category \mathcal{M} is a category with three classes of morphisms:

1 cofibrations $X \xrightarrow{(c)} Y$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition. A model category \mathcal{M} is a category with three classes of morphisms:

- 1 cofibrations $X \xrightarrow{(c)} Y$
- 2 fibrations $X \xrightarrow{(f)} Y$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Definition. A model category \mathcal{M} is a category with three classes of morphisms:

- 1 cofibrations $X \xrightarrow{(c)} Y$
- 2 fibrations $X \xrightarrow{(f)} Y$
- 3 weak equivalences $X \xrightarrow{(w)} Y$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Definition. A model category \mathcal{M} is a category with three classes of morphisms:

- 1 cofibrations $X \xrightarrow{(c)} Y$
- 2 fibrations $X \xrightarrow{(f)} Y$
- 3 weak equivalences $X \xrightarrow{(w)} Y$

closed under composition and retracts and subject to the axioms

1 \mathcal{M} has small limits and colimits,

- 1 \mathcal{M} has small limits and colimits,
- 2 (2 out of 3): given $X \xrightarrow{f} Y \xrightarrow{g} Z$, if any two of gf, f, and g are weak equivalences, so is the third,

- 1 \mathcal{M} has small limits and colimits,
- 2 (2 out of 3): given $X \xrightarrow{f} Y \xrightarrow{g} Z$, if any two of gf, f, and g are weak equivalences, so is the third,
- 3 (factorization): any map $X \to Y$ can factor into both

$$X \xrightarrow{(c)(w)} Z \xrightarrow{(f)} Y$$
 and $X \xrightarrow{(c)} Z' \xrightarrow{(f)(w)} Y;$

that is, a trivial cofibration followed by a fibration, or a cofibration followed by a trivial fibration,

- 1 \mathcal{M} has small limits and colimits,
- 2 (2 out of 3): given $X \xrightarrow{f} Y \xrightarrow{g} Z$, if any two of gf, f, and g are weak equivalences, so is the third,
- 3 (factorization): any map $X \to Y$ can factor into both

$$X \xrightarrow{(c)(w)} Z \xrightarrow{(f)} Y$$
 and $X \xrightarrow{(c)} Z' \xrightarrow{(f)(w)} Y;$

that is, a trivial cofibration followed by a fibration, or a cofibration followed by a trivial fibration,

4 (lifts): if i or p is a weak equivalence, then φ exists and the diagram commutes:

$$\begin{array}{ccc} A & \longrightarrow & C \\ (c) & & p \\ B & \longrightarrow & D \end{array}$$

- 1 \mathcal{M} has small limits and colimits,
- 2 (2 out of 3): given $X \xrightarrow{f} Y \xrightarrow{g} Z$, if any two of gf, f, and g are weak equivalences, so is the third,
- 3 (factorization): any map $X \to Y$ can factor into both

$$X \xrightarrow{(c)(w)} Z \xrightarrow{(f)} Y$$
 and $X \xrightarrow{(c)} Z' \xrightarrow{(f)(w)} Y;$

that is, a trivial cofibration followed by a fibration, or a cofibration followed by a trivial fibration,

4 (lifts): if i or p is a weak equivalence, then φ exists and the diagram commutes:

$$\begin{array}{c} A \longrightarrow C \\ (c) \Big|_{i} & \varphi^{\neg \pi} p \Big| (f) \\ B \longrightarrow D \end{array}$$

Since \mathcal{M} has limits and colimits, it has an initial object \emptyset and a terminal object *.

Since \mathcal{M} has limits and colimits, it has an initial object \emptyset and a terminal object *.

Definition. An object X is cofibrant if $\emptyset \xrightarrow{(c)} X$.

・ロト・4回ト・4回ト・目・9900

Since \mathcal{M} has limits and colimits, it has an initial object \emptyset and a terminal object *.

Definition. An object X is cofibrant if $\emptyset \xrightarrow{(c)} X$. **Definition.** An object X is fibrant if $X \xrightarrow{(f)} *$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Since \mathcal{M} has limits and colimits, it has an initial object \emptyset and a terminal object *.

Definition. An object X is cofibrant if $\emptyset \xrightarrow{(c)} X$. **Definition.** An object X is fibrant if $X \xrightarrow{(f)} *$. **Definition.** By the factorization axiom, given any X, we can factor $\emptyset \to X$ as

$$\emptyset \xrightarrow{(c)} X^c \xrightarrow{(f)(w)} X;$$

 X^c is a cofibrant replacement of X.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへぐ

Since \mathcal{M} has limits and colimits, it has an initial object \emptyset and a terminal object *.

Definition. An object X is cofibrant if $\emptyset \xrightarrow{(c)} X$. **Definition.** An object X is fibrant if $X \xrightarrow{(f)} *$. **Definition.** By the factorization axiom, given any X, we can factor $\emptyset \to X$ as

$$\emptyset \xrightarrow{(c)} X^c \xrightarrow{(f)(w)} X;$$

 X^c is a cofibrant replacement of X. **Definition.** Dually, we can factor $X \to *$ as

$$X \xrightarrow{(c)(w)} X^f \xrightarrow{(f)} *;$$

 X^f is a fibrant replacement of X.

Remark. If you know any two of the three classes among weak equivalences, cofibrations, and fibrations, then the third class is uniquely determined from the axioms of a model category.

Remark. If you know any two of the three classes among weak equivalences, cofibrations, and fibrations, then the third class is uniquely determined from the axioms of a model category. **Remark.** Given a model category \mathcal{M} , its opposite \mathcal{M}^{op} is also a model category where weak equivalences correspond to their opposites, fibrations are opposites of cofibrations, and cofibrations are opposites of fibrations.

Example. Let's describe Kan complexes model categorically, as promised.

I Give sSet the following (Quillen) model categorical structure (2 there is more than one!):

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- I Give sSet the following (Quillen) model categorical structure (2 there is more than one!):
 - Cofibrations are levelwise injections

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- Give sSet the following (Quillen) model categorical structure (2 there is more than one!):
 - Cofibrations are levelwise injections
 - Weak equivalences are weak homotopy equivalences of geometric realizations

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- I Give sSet the following (Quillen) model categorical structure (2 there is more than one!):
 - Cofibrations are levelwise injections
 - Weak equivalences are weak homotopy equivalences of geometric realizations
 - Fibrations are Kan fibrations (right lifting property with respect to horn inclusions). That is, $f: X_{\bullet} \to Y_{\bullet}$ is a fibration if

$$\begin{array}{ccc} \Lambda^n_k & \longrightarrow X \\ & & & & \\ & & & & \\ & & & & \\ \Delta_n & \longrightarrow Y \end{array}$$

Example. Let's describe Kan complexes model categorically, as promised.

- I Give sSet the following (Quillen) model categorical structure (2 there is more than one!):
 - Cofibrations are levelwise injections
 - Weak equivalences are weak homotopy equivalences of geometric realizations
 - Fibrations are Kan fibrations (right lifting property with respect to horn inclusions). That is, $f: X_{\bullet} \to Y_{\bullet}$ is a fibration if

$$\begin{array}{ccc} \Lambda^n_k & \longrightarrow X \\ & & & & \uparrow \\ & & & & \uparrow \\ \Delta_n & \longrightarrow Y \end{array}$$

2 Fibrant objects are those where $X_{\bullet} \to *$ is a fibration. This is the horn filling property.

- Give sSet the following (Quillen) model categorical structure (2 there is more than one!):
 - Cofibrations are levelwise injections
 - Weak equivalences are weak homotopy equivalences of geometric realizations
 - Fibrations are Kan fibrations (right lifting property with respect to horn inclusions). That is, $f: X_{\bullet} \to Y_{\bullet}$ is a fibration if

$$\begin{array}{ccc} \Lambda_k^n & \longrightarrow X \\ & & & & \uparrow \\ & & & & \uparrow \\ \Delta_n & \longrightarrow Y \end{array}$$

- 2 Fibrant objects are those where $X_{\bullet} \to *$ is a fibration. This is the horn filling property.
- 3 Also notice that every object is cofibrant, since $\emptyset \to X$. is a levelwise injection.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Example.

Example.

 \blacksquare Give $s{\bf Set}$ the Joyal model categorical structure:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Example.

- \blacksquare Give $s{\bf Set}$ the Joyal model categorical structure:
 - Cofibrations are levelwise injections
< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- \blacksquare Give $s{\bf Set}$ the Joyal model categorical structure:
 - Cofibrations are levelwise injections
 - Weak equivalences are weak categorical equivalences;
 X → Y ⋅ such that if C ⋅ is an ∞-category, then the induced map [Y ⋅, C ⋅] → [X ⋅, C ⋅] itself induces an isomorphism after applying the functor that takes a simplicial set to the set of objects of its underlying category.

- \blacksquare Give $s{\bf Set}$ the Joyal model categorical structure:
 - Cofibrations are levelwise injections
 - Weak equivalences are weak categorical equivalences;
 X → Y ⋅ such that if C ⋅ is an ∞-category, then the induced map [Y ⋅, C ⋅] → [X ⋅, C ⋅] itself induces an isomorphism after applying the functor that takes a simplicial set to the set of objects of its underlying category.
 - Fibrations are determined. In the case that $X_{\bullet} \to Y_{\bullet}$ is a fibration of ∞ -categories, a fibration is an inner Kan fibration (right lifting property with respect to inner horn inclusions). That is, if X_{\bullet} and Y_{\bullet} are ∞ -categories, then $X_{\bullet} \to Y_{\bullet}$ is a fibration if

$$\begin{array}{ccc} \Lambda_k^n & \longrightarrow X \\ & & & \uparrow \\ & & & \uparrow \\ \Delta_n & \longrightarrow Y \end{array} f f (f) \text{ for } 0 < k < n.$$

Example.

- \blacksquare Give $s{\bf Set}$ the Joyal model categorical structure:
 - Cofibrations are levelwise injections
 - Weak equivalences are weak categorical equivalences;
 X → Y ⋅ such that if C ⋅ is an ∞-category, then the induced map [Y ⋅, C ⋅] → [X ⋅, C ⋅] itself induces an isomorphism after applying the functor that takes a simplicial set to the set of objects of its underlying category.
 - Fibrations are determined. In the case that $X_{\bullet} \to Y_{\bullet}$ is a fibration of ∞ -categories, a fibration is an inner Kan fibration (right lifting property with respect to inner horn inclusions). That is, if X_{\bullet} and Y_{\bullet} are ∞ -categories, then $X_{\bullet} \to Y_{\bullet}$ is a fibration if

$$\begin{array}{ccc} \Lambda^n_k & \longrightarrow & X \\ & & & \uparrow^{r}_f \downarrow_{(f)} & \text{for } 0 < k < n. \\ \Delta_n & \longrightarrow & Y \end{array}$$

2 Fibrant objects are ∞ -categories; $X_{\bullet} \to *$ is a fibration if X_{\bullet} is an ∞ -category.

Example.

1 Give $sAlg_k$, sR-mod, sCR the following model structure:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

- **1** Give $sAlg_k$, sR-mod, sCR the following model structure:
 - Fibrations are fibrations of underlying simplicial sets (Quillen)

- $\mathbbm{1}$ Give $s\mathbf{Alg}_k, sR\text{-mod}, s\mathbf{CR}$ the following model structure:
 - Fibrations are fibrations of underlying simplicial sets (Quillen)
 - Weak equivalences are weak equivalences of underlying simplicial sets (Quillen)

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

- $\mathbbm{1}$ Give $s\mathbf{Alg}_k, sR\text{-mod}, s\mathbf{CR}$ the following model structure:
 - Fibrations are fibrations of underlying simplicial sets (Quillen)
 - Weak equivalences are weak equivalences of underlying simplicial sets (Quillen)
 - Cofibrations are determined.

- 1 Give $sAlg_k$, sR-mod, sCR the following model structure:
 - Fibrations are fibrations of underlying simplicial sets (Quillen)
 - Weak equivalences are weak equivalences of underlying simplicial sets (Quillen)
 - Cofibrations are determined.
- 2 This has the benefit of carrying homotopical information, since every object will be fibrant, thus we can take homotopy, and weak equivalences are homotopy equivalences. These model categories give a setting for homotopical algebra.

Question. How do we start with a model category and cook up an ∞ -category?

Question. How do we start with a model category and cook up an ∞ -category? **Answer.** Localization.

Question. How do we start with a model category and cook up an ∞ -category?

- Answer. Localization.
 - The weak equivalences are thought of as "weakly invertible." Localization is the process by which we make this precise.

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Question. How do we start with a model category and cook up an ∞ -category?

Answer. Localization.

- The weak equivalences are thought of as "weakly invertible." Localization is the process by which we make this precise.
- The construction is more complicated than just "adding inverses for weak equivalences."

Question. How do we start with a model category and cook up an ∞ -category?

Answer. Localization.

- The weak equivalences are thought of as "weakly invertible." Localization is the process by which we make this precise.
- The construction is more complicated than just "adding inverses for weak equivalences."

Remark. Up to weak equivalence in the Dwyer-Kan model category structure of simplicial categories, every simplicial category is the localization of a category with weak equivalences.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. As stated before, model categories are a good framework for doing homotopical algebra. We can understand this via the homotopy category $Ho\mathcal{M}$ associated to a model category \mathcal{M} .

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. As stated before, model categories are a good framework for doing homotopical algebra. We can understand this via the homotopy category $Ho\mathcal{M}$ associated to a model category \mathcal{M} . There are two different ways to build $Ho\mathcal{M}$ which yield equivalent categories.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Remark. As stated before, model categories are a good framework for doing homotopical algebra. We can understand this via the homotopy category $Ho\mathcal{M}$ associated to a model category \mathcal{M} . There are two different ways to build $Ho\mathcal{M}$ which yield equivalent categories.

1 Consider the objects in \mathcal{M} which are both fibrant and cofibrant. Write \mathcal{M}^{cf} .

Remark. As stated before, model categories are a good framework for doing homotopical algebra. We can understand this via the homotopy category $Ho\mathcal{M}$ associated to a model category \mathcal{M} . There are two different ways to build $Ho\mathcal{M}$ which yield equivalent categories.

- 1 Consider the objects in \mathcal{M} which are both fibrant and cofibrant. Write \mathcal{M}^{cf} .
 - There are many: **Lemma.** If X is an object, then $(X^f)^c$ and $(X^c)^f$ are fibrant and cofibrant.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof (because we should do at least one).

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof (because we should do at least one).

$$\emptyset \xrightarrow{(c)} X^c \xrightarrow{(f)(w)} X$$

Proof (because we should do at least one).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof (because we should do at least one).

$$\begin{array}{c} \emptyset \xrightarrow{(c)} X^c \xrightarrow{(f)(w)} X \\ (c)(f)(w) \\ \| & \downarrow^{(c)(w)} \\ \emptyset & (X^c)^f \\ & \downarrow^{(f)} \\ * \end{array}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof (because we should do at least one).

$$\begin{array}{c} \emptyset \xrightarrow{(c)} X^c \xrightarrow{(f)(w)} X \\ (c)(f)(w) \\ \| & \downarrow (c)(w) \\ \emptyset \xrightarrow{(c)} (X^c)^f \\ & \downarrow (f) \\ * \end{array}$$

2 We can define a homotopy between $f, g: X \to Y$ in \mathcal{M}^{cf}

イロト (日下 (日下 (日下)))

- 2 We can define a homotopy between $f, g: X \to Y$ in \mathcal{M}^{cf}
 - Define a cylinder object C(X) for $X \in obj(\mathcal{M})$: C(X) is a factorization of the codiagonal $\nabla_X : X \sqcup X \xrightarrow{\operatorname{id} \sqcup \operatorname{id}} X$ as

$$\nabla_X : X \coprod X \to C(X) \xrightarrow{(w)} X$$

- 2 We can define a homotopy between $f, g: X \to Y$ in \mathcal{M}^{cf}
 - Define a cylinder object C(X) for $X \in obj(\mathcal{M})$: C(X) is a factorization of the codiagonal $\nabla_X : X \sqcup X \xrightarrow{\operatorname{id} \sqcup \operatorname{id}} X$ as

$$\nabla_X : X \coprod X \to C(X) \xrightarrow{(w)} X$$

• Define a (left) homotopy between f, q if there exists a diagram

such that there exists $p: C(X) \xrightarrow{(w)(f)} X$ such that $pi = pj = \text{id and } i \sqcup j : X \sqcup X \xrightarrow{(c)} C(X).$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - のへぐ

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim.$$

イロト (日下 (日下 (日下)))

3 $f, g: X \to Y$ being homotopic is an equivalence relation when X is cofibrant and Y is fibrant. Define the category

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

4 Alternative, abstract nonsense construction:

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

- 4 Alternative, abstract nonsense construction:
 - Let W be the class of weak equivalences.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

- 4 Alternative, abstract nonsense construction:
 - Let W be the class of weak equivalences.
 - $Ho\mathcal{M} \coloneqq W^{-1}\mathcal{M}$; categorical localization.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

- 4 Alternative, abstract nonsense construction:
 - Let W be the class of weak equivalences.
 - $Ho\mathcal{M} \coloneqq W^{-1}\mathcal{M}$; categorical localization.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

- 4 Alternative, abstract nonsense construction:
 - Let W be the class of weak equivalences.
 - $Ho\mathcal{M} \coloneqq W^{-1}\mathcal{M}$; categorical localization.

3 $f, g: X \to Y$ being homotopic is an equivalence relation when X is cofibrant and Y is fibrant. Define the category

$$Ho\mathcal{M} \coloneqq \mathcal{M}^{cf} / \sim$$

- 4 Alternative, abstract nonsense construction:
 - Let W be the class of weak equivalences.
 - $Ho\mathcal{M} \coloneqq W^{-1}\mathcal{M}$; categorical localization.

5 (Hard) Theorem. [Quillen] $W^{-1}\mathcal{M} \cong \mathcal{M}^{cf} / \sim$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Spectra

Question. What does all this have to do with spectra?

Spectra

Question. What does all this have to do with spectra?

• ∞ -category: $s\mathbf{Alg}_k$ with model structure aforementioned

Spectra

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Question. What does all this have to do with spectra?

- ∞ -category: $s\mathbf{Alg}_k$ with model structure aforementioned
- ∞ -category: underlying ∞ -category of the model category DGA_k with weak equivalences quasi-isomorphisms and cofibrations retracts of iterated cell attachments
Spectra

Question. What does all this have to do with spectra?

- ∞ -category: $sAlg_k$ with model structure aforementioned
- ∞ -category: underlying ∞ -category of the model category DGA_k with weak equivalences quasi-isomorphisms and cofibrations retracts of iterated cell attachments
- ∞ -category: \mathcal{EI}_k the ∞ -category of E_{∞} -ring spectra over k: commutative, associative monoid objects in a symmetric monoidal model category of spectra

Spectra

Question. What does all this have to do with spectra?

- ∞ -category: $s\mathbf{Alg}_k$ with model structure aforementioned
- ∞ -category: underlying ∞ -category of the model category DGA_k with weak equivalences quasi-isomorphisms and cofibrations retracts of iterated cell attachments
- ∞ -category: \mathcal{EI}_k the ∞ -category of E_{∞} -ring spectra over k: commutative, associative monoid objects in a symmetric monoidal model category of spectra

We have functors $s\mathbf{Alg}_k \xrightarrow{DK} DGA_k \to \mathcal{EI}_k$. If k is a **Q**-algebra, then $DGA_k \cong_{\infty-\text{cat}} \mathcal{EI}_k$, and DK is fully faithful with essential image connective objects.

Spectra

Question. What does all this have to do with spectra?

- ∞ -category: $sAlg_k$ with model structure aforementioned
- ∞ -category: underlying ∞ -category of the model category DGA_k with weak equivalences quasi-isomorphisms and cofibrations retracts of iterated cell attachments
- ∞ -category: \mathcal{EI}_k the ∞ -category of E_∞ -ring spectra over k: commutative, associative monoid objects in a symmetric monoidal model category of spectra

We have functors $s \operatorname{Alg}_k \xrightarrow{DK} DGA_k \to \mathcal{EI}_k$. If k is a **Q**-algebra, then $DGA_k \cong_{\infty-\operatorname{cat}} \mathcal{EI}_k$, and DK is fully faithful with essential image connective objects.

Simplicial rings are dense in connective spectra. For treatment of this, see section 3.3 [Dundas, Goodwillie, McCarthy].